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NOTE

On the Termination of the Perfectly Matched
Layer with Local Absorbing Boundary

Conditions1

1. INTRODUCTION

Unsplit [4–5] perfectly matched layers (PML, see [1] for the original split-field for-
mulation) have proven to be effective alternatives to local absorbing boundary conditions
(ABC) for the truncation of computational domains employed in the numerical solution
of electromagnetic wave propagation problems. The PML(0≤ z< d) is placed adjacent
to a computational domainÄc (z< 0) and is truncated atz= d by imposing a homoge-
neous Dirichlet boundary condition on the tangential Electric fields there, e.g.,B = 1 in
Fig. 1. This is equivalent to enclosing the computational domain with a metal (perfect
electric conductor, or PEC) box whose inner walls are coated with a wave absorber of
depthd and loss profileσ(s), wheres is the depth coordinate into the layer. The electric
and magnetic conductivities in the layer are then proportional toσ(s) = σmaxsn, where
n = 0, 1, 2, the constants of proportionality being the permittivityε and permeabilityµ,
respectively. In applications the layer is tuned by varyingσmax to achieve the maximum
absorption of outgoing waves for givend and discretization parameters. A properly tuned
layer typically provides more than 3 orders of magnitude reduction in spurious reflection
due to artificial grid truncation over that afforded by classical approaches. Therefore, it is
of interest to explore the possibility of further improving such performance by altering the
boundary condition used to terminate it. Previous work on terminating the Berenger PML
with local ABCs [2, 3] did not take into account the presence of loss in the layer and only
examined the reflection properties of the composite layer obtained with operatorsB derived
for the losslesswave equation. Consequently, little improvement was evident with those
approaches leaving the hope that more improvement can be realized if the lossis taken into
account.

Herein, using as a starting point the two-dimensional unsplit PML equations [4, 5] for the
TM polarization in a layer that is perpendicular to theẑ-axis [5], we derive and implement

1 The U.S. Government’s right to retain a nonexclusive royalty-free license in and to the copyright covering this
paper, for government purposes, is acknowledged.
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FIG. 1. The PML geometry.

two local ABCs, which take into account the loss in the layer, to replace the PEC termination.
We also derive the analytical reflection coefficients of the composite layer. Our first-order
ABC is equivalent to setting the incoming characteristic variable equal to zero atz = d, and
thus it is particularly useful for staggered schemes [6] for which characteristic boundary
conditions cannot be readily implemented due to the dependent variables not being colocated
in space-time.

We test the resulting combinations by determining the reflection of outgoing waves ob-
tained with the ABC-backed layer in a simulation of scattering of transient cylindrical
waves by a dielectric cylinder in two dimensions and comparing it to the reduction obtained
with a PEC-backed layer. We find that using the ABC-backed layer in transient numerical
simulations is justified only for then = 0 conductivity case (constant loss profile), while
for the n = 1, 2 cases (linear or quadratic conductivity variation) we find that the ABC-
backed layer performs as well as the simpler, PEC-backed, layer. Hence, we conclude that
it is not worthwhileto replace the simple PEC backing of the PML with other, computa-
tionally more expensive procedures when the time-domain wavefields to be absorbed are
wideband. We caution the reader that our work herein does not determine whether the
ABC-backed layer is superior to the PEC-backed layer for monochromatic time-harmonic
problems.

2. DERIVATION

A plane wave of frequencyω is incident at an angleθ on a PML layer (see Fig. 1) placed
adjacent to the computational domainÄc. The fields inÄc satisfy the two-dimensional
Maxwell equations (TM-polarization,ei ωt time dependence, scaled for convenience so that
ε = µ = 1)

i ωEx = ∂ Hz

∂y
− ∂ Hy

∂z

i ωHy = −∂Ex

∂z
(2.1)

i ωHz = ∂Ex

∂y
.



            

TERMINATING THE PML WITH LOCAL ABCs 667

The electromagnetic waves in the PML are modeled by the modified Maxwell equations
[5]

i ω

(
1 − i

σ(z)

ω

)
Ex = ∂ Hz

∂y
− ∂ Hy

∂z

i ω

(
1 − i

σ(z)

ω

)
Hy = −∂Ex

∂z
(2.2)

i ω
Hz(

1 − i σ(z)
ω

) = ∂Ex

∂y
.

Electromagnetic arguments dictate that the tangential fields,Ex andHy, are continuous
at z = 0, while a boundary condition should be imposed onEx at z = d, i.e., B(Ex) = 0.
For transient waves in the layer we consider three boundary conditions

B0 = 1, (2.3)

and

Bm =
m∏

i =1

(
∂

∂t
+ 1

αi

∂

∂z
+ σ(d)

)
; m = 1, 2, (2.4)

whereαi = cosθi , i = 1, 2 are the cosines of the angles of perfect absorption for plane
waves incident on the layer atz = 0 as they exitÄc.

The solution of (2.1) for the tangential fields inÄc is(
Ex

Hy

)
=
(

1
α

)
ei ω(t−αz−βy) +

(
Ri

−αRi

)
ei ω(t+αz−βy), (2.5)

whereα = cosθ and β = sinθ . The unknownsRi , i = 0, 1, 2 are the layer’s reflection
coefficients corresponding to each boundary condition (2.3)–(2.4).

The solution of (2.2) is easily obtained despite the variable coefficientσ(z). In the layer
region, 0≤ z < d, it is(

Ex

Hy

)
=
(

A
−αA

)
ei ω(t+αz+α I (z)−βy) +

(
B

αB

)
ei ω(t−αz−α I (z)−βy) (2.6)

with I (z) = ∫ z
0 σ(s) ds.

The three unknownsRi , A, andB are determined by applying the tangential-field conti-
nuity conditions atz = 0 and the boundary condition (with∂/∂t replaced byi ω) on Ex at
z = d. We obtain the reflection coefficients

R0 = −e−2i ωα−2α I (d), (2.7)

R1 = −1 − α
α1

1 + α
α1

R0, (2.8)

and

R2 = −
(i ω + σ(d))2

(
1 − α

α1
− α

α2
+ α2

α1α2

)
− σ ′(d) α

α1α2

(i ω + σ(d))2
(

1 + α
α1

+ α
α2

+ α2

α1α2

)
+ σ ′(d) α

α1α2

R0, (2.9)
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whereσ ′(z) = dσ(z)
dz . Our R0 is Berenger’s result for the PEC-backed layer;R0 → 0 as

d → ∞. Note that (2.8) shows that the finite layer behaves as an infinite layer(R1 ≡ 0) for
plane waves incident atθ = θ1. Further, (2.9) shows that a constant finite layer (one for which
σ ′(z) = 0, 0≤ z≤ d) also behaves as an infinite layer for plane waves now incident at two
angles,θ = θ1 andθ = θ2. Significantly, the dependence ofR2 on the general loss profile
and its rate of change atz = d indicates that the PML backed by local high-order ABCs
(m≥ 2) should notresult in any improvement over that afforded by the PEC-backed layer.

3. NUMERICAL EXPERIMENTS AND DISCUSSION

We now briefly discuss the implementation of (2.3)–(2.4) with a 2nd-order accurate
staggered scheme [6] to solve (2.1)–(2.2) in the time domain. The application of (2.3) in
the staggered scheme is trivial as one simply setsEx = 0 by zeroing the electric field nodes
placed atz = d. Each member of (2.4) is approximated here as

∂

∂t
+ 1

αi

∂

∂z
+ σ(d) ≈

(
1 − S−1

t

)(
1 + S−1

z

)
21t

+
(
1 − S−1

z

)(
1 + S−1

t

)
21αi

+ σ(d)

(
1 + S−1

z

)(
1 + S−1

t

)
4

, (3.1)

where the shift operators are defined in [7], and1t and 1 are, respectively, the time-
and spatial-step sizes. A composition of (3.1) is used to apply (2.4) to the update of the
discreteEx field on the boundary nodes atz= d in order to provide the boundary closure
for the scheme. The numerical order of accuracy of that closure isO(12) when the stability
condition,1t ≤ 1/

√
2, of the interior scheme is satisfied.

The numerical experiments involve a circular dielectric scatterer, illuminated by a cylin-
drical wave generated with apulsedelectric–current point source (see [5] for details of
the setup), embedded in free space. The finite-sized computational domainÄc contains the
source and the target, and is itself embedded inside a much larger reference domainÄL

with boundary∂ÄL on which we implement a PEC condition. DomainÄc is truncated by
surrounding it with a uniform width PEC-backed or ABC-backed PML. We consider two
fixed layer widths,d = 81 and 2d = 161 with 1 = 5× 10−3 corresponding to the coarsest
spatial cell size used in the computations. As∂ÄL is placed sufficiently far from∂Äc, all
points in the test domain are causally isolated from reflections generated at∂ÄL over the
computation time interval [0, T = 5ts]. To test and compare the two boundary treatments
we compute the error

e(n1t) = ∥∥EÄc
x (·, ·, n1t) − EÄL

x (·, ·, n1t)
∥∥

2; n ∈ [0, T/1t ], (3.2)

introduced at each time stepn by the artificial truncation ofÄc. In (3.2), EÄc,ÄL
x is the

computed electric field in the appropriate domain indicated by the superscript, and theL2

norm is taken overÄc ∪ ∂Äc; this definition is a measure of how well the artificial truncation
approximates the true “physics” at the boundary which dictates that there should be no
boundary felt by the outgoing waves. The loss profile is tuned by varyingσmax to give the
least reflection for the PEC-backed layer at the coarsest1 for all n at a CFL number of 0.5.
For Figs. 2–6 it turned out that this optimalσmaxwas also optimal for the ABC-backed layer.
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FIG. 2. Time dependence of the reflected energy due to the domain truncation.

FIG. 3. Same as Fig. 2.

FIG. 4. Same as Fig. 2.
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FIG. 5. Same as Fig. 2 for the linear layer.

We first experimented withα1 = 1 in theB1 operator. Figures 2–4 summarize our find-
ings for the 8-point versus the 16-point constant conductivityn = 0 layers. It is seen that the
ABC-backed PML of widthd performs as well as the PEC-backed PML oncoarsegrids
(Fig. 2); as the grid is refined the ABC-backed layers outperforms the PEC-backed layer
(Fig. 3). The ABC-backed layer of widthd performs as a PEC-backed layer of width 2d.
Significantly, the reflection of the ABC-backed layer continues to decrease as1 is refined,
while that of the PEC-backed layer does not improve past a certain1 (Fig. 4). This is
becauseR0 is a lower bound for allα in the PEC-backed computation, while for someα in
the ABC-backed computation the corresponding lower bound is exactly zero. In Fig. 4, the
finest resolution results where truncated at the time step past which they were contaminated
by reflections from∂ÄL which were unavoidable due to computer memory limitations.

Figures 5 and 6 confirm that the ABC- and PEC-backed layers perform equivalently for
the linear and quadratic variation loss profiles, respectively. They also show (note the change
in the vertical scale) that merely increasing the degree of smoothness of the loss profile in the
neighborhood ofz= 0 eliminates the need for a sophisticated boundary treatment to truncate

FIG. 6. Same as Fig. 2 for the quadratic layer.
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FIG. 7. The effect of the optimalσ for the two different backings.

the PML atz= d as the reflection error is reduced by one and three orders of magnitude,
respectively, from its maximum value attained withn = 0 at the same discretization. We
have also experimented with other values of 0< α1 < 1 but our best results did not improve
further.

To test the inference of the previous paragraph we also experimented with ann = 1
layer of widthd/2= 41 at the coarsest spatial step. We found that the optimalσmax for
the PEC-backed layer was non-optimal for the ABC-backed layer which required further
tuning toσABC

max ≈ 1.5× σPEC
max; the additional dispersion introduced by the ABC termination

is important for shallow layers only. Figure 7 shows that merely changing the type of
termination of an optimal (obtained by varyingσmax) PEC-backed layer does not result in
an improvement; actually, the ABC-backed layer at this width andσmax is slightly worse.
However, an optimal ABC-backed layer produces about half the reflection of the PEC-
backed layer of the same width operated at the sameσmax. Using these two sets of runs as
a baseline we then refined the grid once(1 = 0.0025). Figure 8 shows that, for fixed layer

FIG. 8. Time dependence of the reflected energy due to the domain truncation with the optimized ABC-backed
PML.
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FIG. 9. Same as Fig. 8 for the optimized PEC-backed PML.

width, a tuned ABC-backed layer outperforms the PEC-backed layer when it is operated
at the same (non-optimal)σmax. On the other hand, when the PEC-backed layer is optimal
merely replacing the termination does not result in an improvement (Fig. 9).

We also tested theB2 operator withα1 = α2 = 1. The results were indistinguishable from
those obtained with the PEC-backed layer for alln. Other choices forα1 andα2 in the
interval (0, 1] produced poorer results.

We conclude that, in the framework herein,it is not worthwhileto replace the PEC
boundary condition, typically used to truncate the perfectly matched layer, with one that is
computationally more expensive.
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