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NOTE

On the Termination of the Perfectly Matched
Layer with Local Absorbing Boundary
Conditions?

1. INTRODUCTION

Unsplit [4-5] perfectly matched layers (PML, see [1] for the original split-field fo
mulation) have proven to be effective alternatives to local absorbing boundary condi
(ABC) for the truncation of computational domains employed in the numerical solu
of electromagnetic wave propagation problems. The RBIk z < d) is placed adjacent
to a computational domaif2. (z < 0) and is truncated at=d by imposing a homoge-
neous Dirichlet boundary condition on the tangential Electric fields there,&gJ in
Fig. 1. This is equivalent to enclosing the computational domain with a metal (per
electric conductor, or PEC) box whose inner walls are coated with a wave absorb
depthd and loss profiler (s), wheres is the depth coordinate into the layer. The electr
and magnetic conductivities in the layer are then proportional (8 = omaxS", where
n=0, 1, 2, the constants of proportionality being the permittivitand permeability.,
respectively. In applications the layer is tuned by varyingy to achieve the maximum
absorption of outgoing waves for givehand discretization parameters. A properly tune
layer typically provides more than 3 orders of magnitude reduction in spurious reflec
due to artificial grid truncation over that afforded by classical approaches. Therefore,
of interest to explore the possibility of further improving such performance by altering
boundary condition used to terminate it. Previous work on terminating the Berenger |
with local ABCs [2, 3] did not take into account the presence of loss in the layer and «
examined the reflection properties of the composite layer obtained with opeBaders/ed
for the losslesavave equation. Consequently, little improvement was evident with the
approaches leaving the hope that more improvement can be realized if thetéden into
account.

Herein, using as a starting point the two-dimensional unsplit PML equations [4, 5] for
TM polarization in a layer that is perpendicular to thaxis [5], we derive and implement

1The U.S. Government's right to retain a nonexclusive royalty-free license in and to the copyright covering
paper, for government purposes, is acknowledged.
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FIG. 1. The PML geometry.

two local ABCs, which take into account the loss in the layer, to replace the PEC terminati
We also derive the analytical reflection coefficients of the composite layer. Our first-or
ABC is equivalent to setting the incoming characteristic variable equal to zere at, and
thus it is particularly useful for staggered schemes [6] for which characteristic bound
conditions cannot be readily implemented due to the dependent variables not being coloc
in space-time.

We test the resulting combinations by determining the reflection of outgoing waves ¢
tained with the ABC-backed layer in a simulation of scattering of transient cylindric
waves by a dielectric cylinder in two dimensions and comparing it to the reduction obtair
with a PEC-backed layer. We find that using the ABC-backed layer in transient numeri
simulations is justified only for thea =0 conductivity case (constant loss profile), while
for then=1, 2 cases (linear or quadratic conductivity variation) we find that the ABC
backed layer performs as well as the simpler, PEC-backed, layer. Hence, we conclude
it is not worthwhileto replace the simple PEC backing of the PML with other, compute
tionally more expensive procedures when the time-domain wavefields to be absorbec
wideband. We caution the reader that our work herein does not determine whether
ABC-backed layer is superior to the PEC-backed layer for monochromatic time-harmo
problems.

2. DERIVATION

A plane wave of frequenay is incident at an anglé on a PML layer (see Fig. 1) placed
adjacent to the computational domd. The fields inQ; satisfy the two-dimensional
Maxwell equations (TM-polarizatior ! time dependence, scaled for convenience so th:
e=pn=1)
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The electromagnetic waves in the PML are modeled by the modified Maxwell equati
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Electromagnetic arguments dictate that the tangential fi@lgdsnd Hy, are continuous
atz = 0, while a boundary condition should be imposedgyatz = d, i.e.,B(Ex) =0
For transient waves in the layer we consider three boundary conditions

Bo =1, (2.3)
and

m

9 19
Bm=H<at+—a—z+a(d)) m=1,2, (2.4)
whereo; = cosg;, i =1, 2 are the cosines of the angles of perfect absorption for pla
waves incident on the layer at= 0 as they exit..

The solution of (2.1) for the tangential fieldsdr, is

Ex — 1 jo(t—az—pYy) R i o (t+az—BY)
(B)= () e ( B Jawmmm ey
wherea = cosf and 8 = sind. The unknownsR;,i =0, 1, 2 are the layer’s reflection
coefficients corresponding to each boundary condition (2.3)—(2.4)

The solution of (2.2) is easily obtained despite the variable coeffieient In the layer
region, 0< z < d, itis

Ex) A jo(t+az+al (2)—BY) B
(i) = (on)® -

eiw(tfotzfal (2—-By)
o B>
with | (2) =

(2.6)
= [, o(9)ds.

The three unknownR;, A, andB are determined by applying the tangential-field cont
nuity conditions az = 0 and the boundary condition (witlydt replaced by ») on E4 at
z = d. We obtain the reflection coefficients

RO — _e—Ziwoz—Zozl(d)7 (27)
R 1o 2.8
L= e . (2.8)
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whereo’(2) = %. Our Ry is Berenger's result for the PEC-backed layBg— 0 as

d — oo. Note that (2.8) shows that the finite layer behaves as an infinite (&ez 0) for
plane waves incident at=0;. Further, (2.9) shows that a constant finite layer (one for whic
o’(z)=0,0=<z<d) also behaves as an infinite layer for plane waves now incident at tv
anglesgp = 0; andd = 6,. Significantly, the dependence Bf on the general loss profile
and its rate of change at= d indicates that the PML backed by local high-order ABCs

(m> 2) should notresult in any improvement over that afforded by the PEC-backed laye

3. NUMERICAL EXPERIMENTS AND DISCUSSION

We now briefly discuss the implementation of (2.3)—(2.4) with a 2nd-order accur:
staggered scheme [6] to solve (2.1)—(2.2) in the time domain. The application of (2.3
the staggered scheme is trivial as one simply Egts= 0 by zeroing the electric field nodes
placed az = d. Each member of (2.4) is approximated here as

o 10, o (1-SHA+sY  1-SHE+Y
gz teD™ X + 0
1 1
+G(d)(1+$)4(1+5?)’ 3.1)

where the shift operators are defined in [7], antland A are, respectively, the time-
and spatial-step sizes. A composition of (3.1) is used to apply (2.4) to the update of
discreteEy field on the boundary nodes at=d in order to provide the boundary closure
for the scheme. The numerical order of accuracy of that clos@€As’) when the stability
condition, At < A/+/2, of the interior scheme is satisfied.

The numerical experiments involve a circular dielectric scatterer, illuminated by a cyli
drical wave generated with pulsedelectric—current point source (see [5] for details of
the setup), embedded in free space. The finite-sized computational d@geamtains the
source and the target, and is itself embedded inside a much larger reference eiymait
with boundaryd 2. on which we implement a PEC condition. Dom&kg is truncated by
surrounding it with a uniform width PEC-backed or ABC-backed PML. We consider tw
fixed layer widthsd = 8A and 21 = 16A with A =5 x 1073 corresponding to the coarsest
spatial cell size used in the computations. 33, is placed sufficiently far frond 2., all
points in the test domain are causally isolated from reflections generaiét] aiver the
computation time interval [OT = 5ts]. To test and compare the two boundary treatment
we compute the error

e(nAt) = ||[EZ(-, -, nAt) — EZL(-, -, nAY)

2 ne [0, T/At], (3.2)
introduced at each time stepby the artificial truncation of2.. In (3.2), ESt is the
computed electric field in the appropriate domain indicated by the superscript, ahgl the
norm is taken oveR. U 02.; this definition is a measure of how well the artificial truncation
approximates the true “physics” at the boundary which dictates that there should be
boundary felt by the outgoing waves. The loss profile is tuned by vaggipgto give the
least reflection for the PEC-backed layer at the coarsdst all n at a CFL number of 0.5.
For Figs. 2—6 itturned out that this optingl.xwas also optimal for the ABC-backed layer.
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FIG. 2. Time dependence of the reflected energy due to the domain truncation.
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FIG. 3. Same as Fig. 2.
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FIG. 4. Same as Fig. 2.
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FIG.5. Same as Fig. 2 for the linear layer.

We first experimented with; =1 in the B; operator. Figures 2—4 summarize our find-
ings for the 8-point versus the 16-point constant conductivityO layers. It is seen that the
ABC-backed PML of widthd performs as well as the PEC-backed PMLawarsegrids
(Fig. 2); as the grid is refined the ABC-backed layers outperforms the PEC-backed la
(Fig. 3). The ABC-backed layer of widtth performs as a PEC-backed layer of widith 2
Significantly, the reflection of the ABC-backed layer continues to decreasesaefined,
while that of the PEC-backed layer does not improve past a ceftgiig. 4). This is
becausdr; is a lower bound for allk in the PEC-backed computation, while for sommn
the ABC-backed computation the corresponding lower bound is exactly zero. In Fig. 4,
finest resolution results where truncated at the time step past which they were contamin
by reflections fronp 2. which were unavoidable due to computer memory limitations.

Figures 5 and 6 confirm that the ABC- and PEC-backed layers perform equivalently
the linear and quadratic variation loss profiles, respectively. They also show (note the che
in the vertical scale) that merely increasing the degree of smoothness of the loss profile it
neighborhood of = 0 eliminates the need for a sophisticated boundary treatment to trunc
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FIG. 6. Same as Fig. 2 for the quadratic layer.
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FIG. 7. The effect of the optimat for the two different backings.

the PML atz=d as the reflection error is reduced by one and three orders of magnitt
respectively, from its maximum value attained with= 0 at the same discretization. We
have also experimented with other values ef &; < 1 but our best results did not improve
further.

To test the inference of the previous paragraph we also experimented with-4n
layer of widthd/2=4A at the coarsest spatial step. We found that the optimal for
the PEC-backed layer was non-optimal for the ABC-backed layer which required furi
tuning too A2¢ ~ 1.5 x o PES the additional dispersion introduced by the ABC terminatio
is important for shallow layers only. Figure 7 shows that merely changing the type
termination of an optimal (obtained by varying,,x) PEC-backed layer does not result ir
an improvement; actually, the ABC-backed layer at this width @rg is slightly worse.
However, an optimal ABC-backed layer produces about half the reflection of the Pl
backed layer of the same width operated at the same Using these two sets of runs as
a baseline we then refined the grid oriee= 0.0025. Figure 8 shows that, for fixed layer
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FIG.8. Time dependence of the reflected energy due to the domain truncation with the optimized ABC-ba
PML.
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FIG.9. Same as Fig. 8 for the optimized PEC-backed PML.

width, a tuned ABC-backed layer outperforms the PEC-backed layer when it is opera
at the same (non-optimak},ax. On the other hand, when the PEC-backed layer is optim:
merely replacing the termination does not result in an improvement (Fig. 9).

We also tested thB, operator withv; = o, = 1. The results were indistinguishable from
those obtained with the PEC-backed layer forrallOther choices for; andas in the
interval (0, 1] produced poorer results.

We conclude that, in the framework hereihjs not worthwhileto replace the PEC
boundary condition, typically used to truncate the perfectly matched layer, with one tha
computationally more expensive.
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